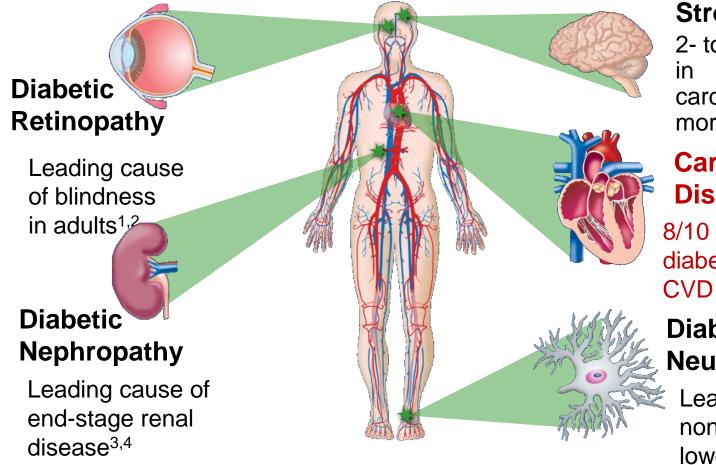
Trial Updates in Type 2 Diabetes: Cardiovascular Outcomes and Clinical Implications

Carol H. Wysham, MD

Clinical Professor of Medicine

Rockwood Center for Diabetes and Endocrinology

Spokane, Washington


Disclosures

Advisor, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Novo Nordisk, Sanofi

Consultant, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Novo Nordisk, Sanofi

Speaker, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Insulet, Janssen, Novo Nordisk, sanofi

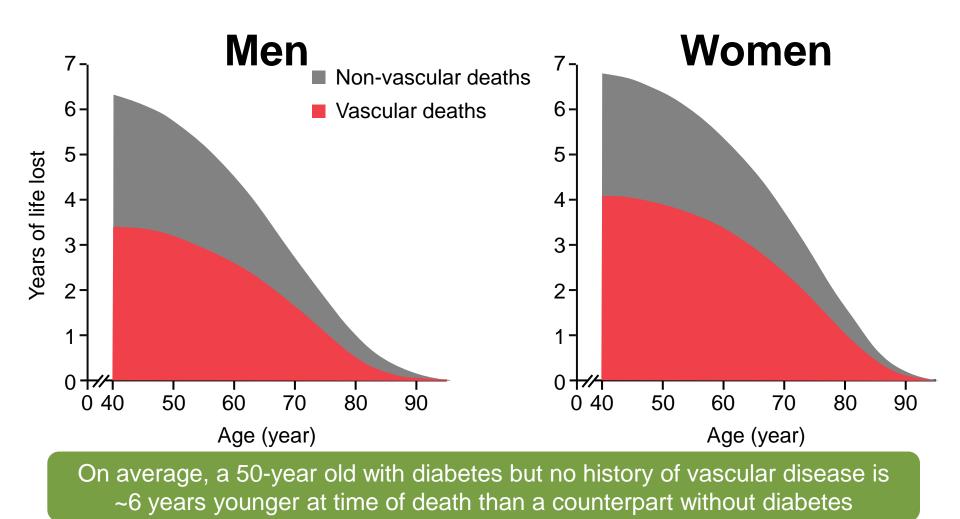
Complications of Diabetes

Stroke 2- to 4-fold increase in cardiovascular mortality and stroke⁵

Cardiovascular Disease

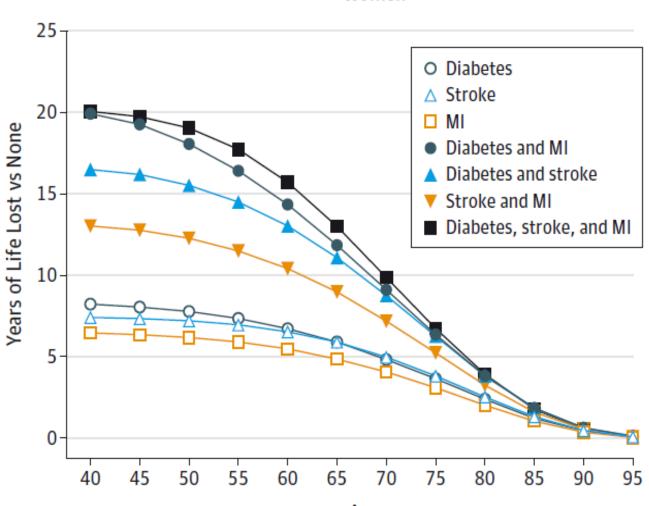
8/10 individuals with diabetes die from CVD

Diabetic Neuropathy


Leading cause of non-traumatic lower extremity amputations^{7,8}

ON average diabetes doubles CVD risk Emerging Risk Factor Collaboration (2010) Lancet

	Number of cases	HR (95% CI)
Coronary heart disease*	26 505	
Coronary death	11 556	<u> </u>
Non-fatal myocardial infarction	14 741	<u> 1.82 (1.64–2.03)</u>
Stroke subtypes*		
Ischaemic stroke	3799	2·27 (1·95–2·65)
Haemorrhagic stroke	1183	 1·56 (1·19–2·05)
Unclassified stroke	4973	<u> </u>
Other vascular deaths	3826	1 ·73 (1·51−1·98)
		1 2 4

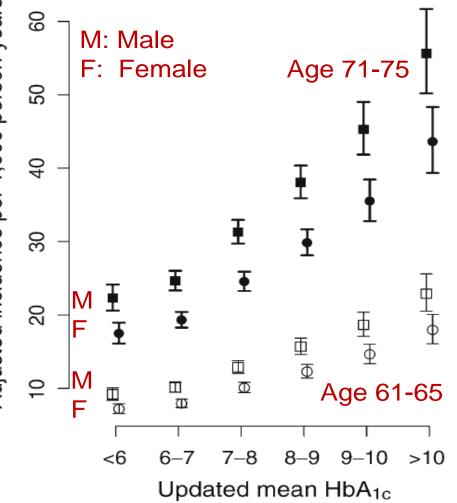

Hazard ratios for vascular outcomes DM vs. no DM

Diabetes is associated with significant loss of life years

Seshasai et al. N Engl J Med 2011;364:829-41.

Diabetes PLUS prior CVD begets high premature mortality

Women


ERFC JAMA 2015.

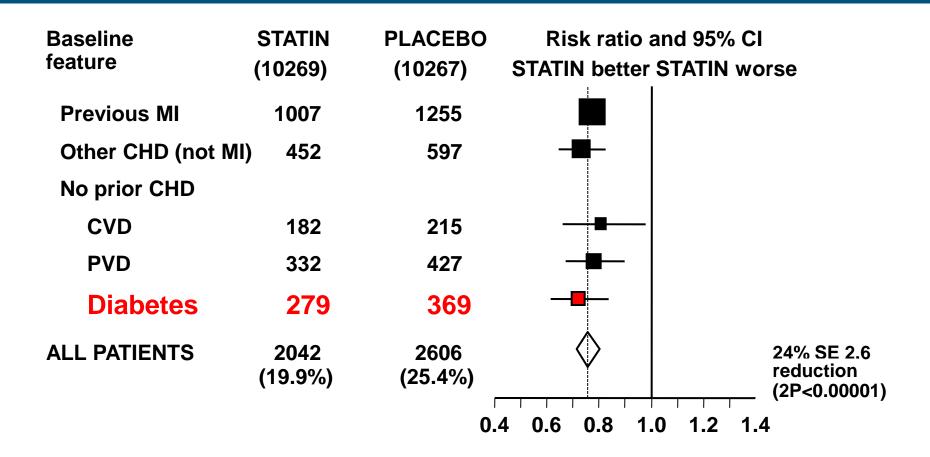
Age, y

Type 2 DM: A1c & Heart Failure

- N=83,021 from Swedish National Register 1998-'03, f/u until HF, death or Dec 31/09
- 10,969 (13.2%) developed HF during a mean follow-up of 7.2 years

Overall incidence ~ 2%/y Independent predictors were HbA1c, older age, male sex, diabetes duration Adjusted incidence per 1,000 person-years

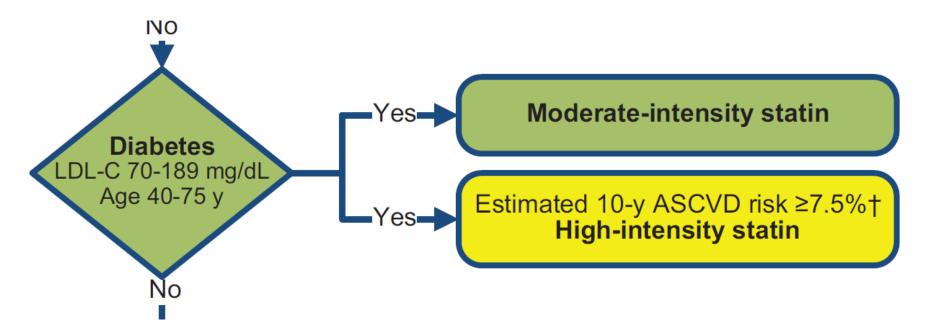
What works and what may not work for CVD prevention


What works?

- Statins
- BP reduction
- Smoking cessation
- Glucose lowering?
 - Modality?

What remains uncertain

- Lifestyle intervention?
- Fibrates?
- <u>Aspirin primary</u> prevention?

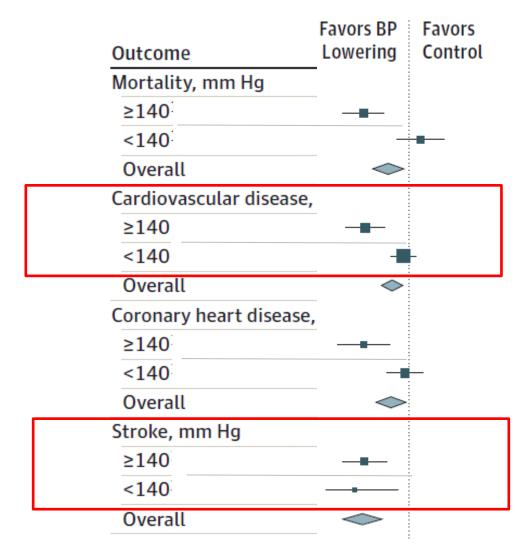

Statins Work as well in DM as in Non-DM

20% reduction in risk per ~40 mg/dl reduction in LDL-c

Heart Protection Study (2002) Lancet

Which patients with diabetes recommended for statin?

If aged < 40 or >75 and LDL-c <190


- Measure risk score and consider if:
 - Additional ASCVD risk factors: obesity, FH premature CAD, smoking, hypertension, LDL > 100 mg/dl.
 - Presence of CKD, retinopathy
 - ♦ CRP >2mg/I, CAC >=300 Agatston unit, ABI <0.9</p>

Stone (2014) JACC

Original Investigation

Blood Pressure Lowering in Type 2 Diabetes A Systematic Review and Meta-analysis

Connor A. Emdin, HBSc; Kazem Rahimi, DM, MSc; Bruce Neal, PhD; Thomas Callender, MBChB; Vlado Perkovic, PhD; Anushka Patel, PhD

Emdin et al (2015) JAMA

SBP target: 140 most, 130 select but relax in elderly? (150 when >80 yrs)

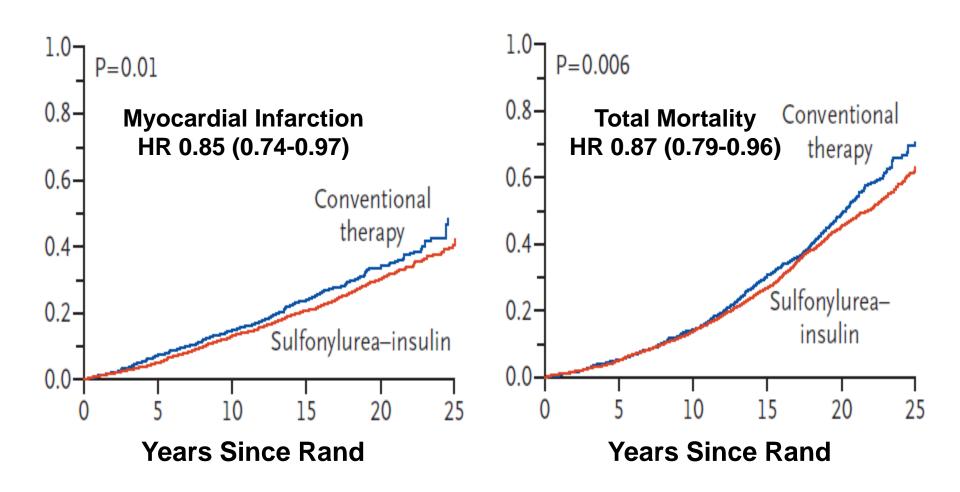
- For most outcomes, risk reduction max <140 SBP¹
- <130 SBP further reductions in stroke, retinopathy and albuminuria¹
- DBP < 70 associated with increased mortality in older adults²
- All BP meds work though CCBs less stroke, ARBs and diuretics, less HF¹
 - Beta-blockers least impressive

Emdin et al JAMA 2015 2 ADA Standards of Care 2016

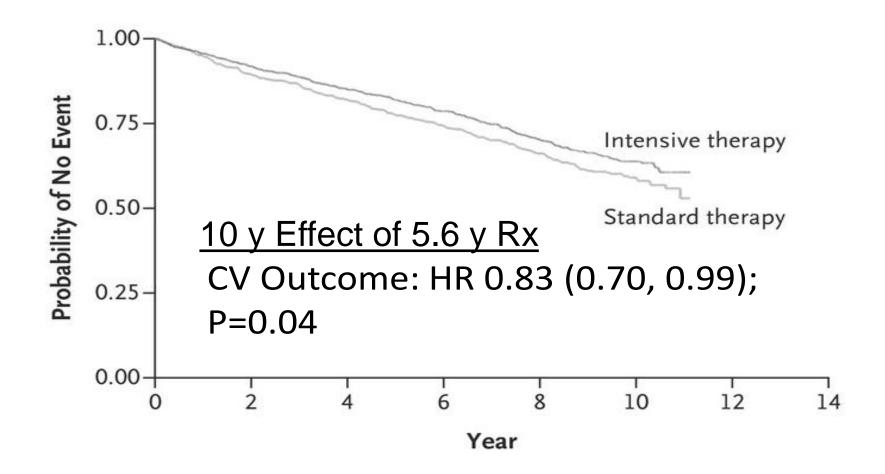
Type 2 DM: Glucose Lowering Trials

Study	Duration	Ν	Glycemia		
	(yrs)		Target	Achieved A1c	
UKPDS	10	3867	FPG < 6 (110)	7.0% vs. 7.9%	
ACCORD	3.5	10251	A1C < 6.0%	6.4% vs. 7.5%	
ADVANCE	5	11140	A1C < 6.5%	6.5% vs. 7.3%	
VADT	6.3	1791	A1C < 6.0%	6.9% vs. 8.4%	

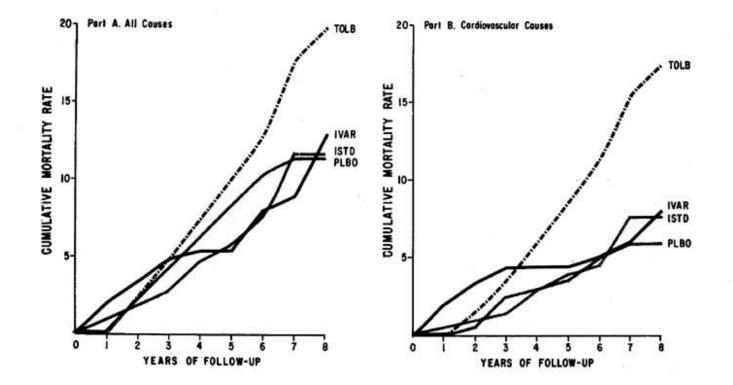
UKPDS - Lancet 1998:837-853; ACCORD - NEJM 2011:818-828 ADVANCE - NEJM 2008:2560-72; VADT - NEJM 360;129-39


Meta-Analysis of Glucose Lowering Trials

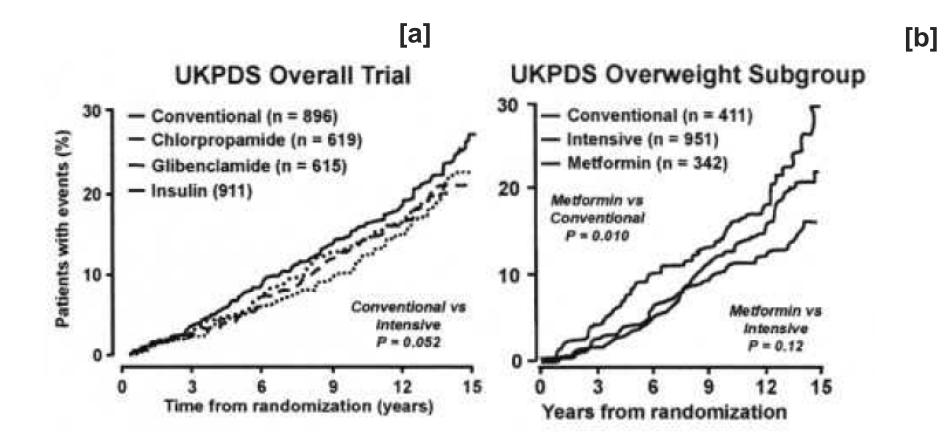
ACCORD ADVANCE UKPDS (@ 5y) VADT


Turnbull et al. Diabetologia 2009;2288

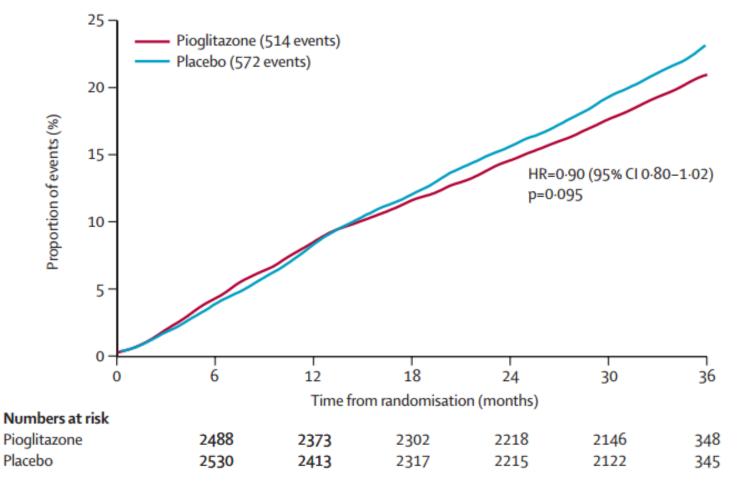
		Number of events (annual event rate, %)		Favours	Favours	Hazard ratio
Trials	More intensive	Less intensive	ΔHbA _{1c} (%)	intensive	less intensive	(95% CI)
Major cardiovas	cular events					
ACCORD	352 (2.11)	371 (2.29)	- 1.01		-	0.90 (0.78-1.04)
ADVANCE	557 (2.15)	590 (2.28)	-0.72	-	F	0.94 (0.84-1.06)
UKPDS	169 (1.30)	87 (1.60)	-0.66		-	0.80 (0.62-1.04)
VADT	116 (2.68)	128 (2.98)	-1.16			0.90 (0.70-1.16)
Overall	1,194	1,176	-0.88	\diamond	(0.91 (0.84–0.99) Q=1.32, p=0.72, I ² =0.0%)
Stroke						
ACCORD	73 (0.43)	70 (0.42)	- 1.01			1.00 (0.72-1.39)
ADVANCE	238 (0.91)	246 (0.94)	-0.72			0.97 (0.81-1.16)
UKPDS	35 (0.26)	17 (0.31)	-0.66			0.85 (0.48-1.52)
VADT	32 (0.71)	37 (0.82)	-1.16			0.87 (0.54-1.39)
Overall	378	370	-0.88	\triangleleft	> ,	0.96 (0.83–1.10)
					(IQ=0.40, p=0.94, I ² =0.0%)
Myocardial infa	rction					
ACCORD	198 (1.18)	245 (1.51)	-1.01			0.77 (0.64-0.93)
ADVANCE	310 (1.18)	337 (1.28)	-0.72	-	<u> </u>	0.92 (0.79-1.07)
UKPDS	150 (1.20)	76 (1.40)	-0.66			0.81 (0.62-1.07)
VADT	72 (1.65)	87 (1.99)	-1.16			0.83 (0.61-1.13)
Overall	730	745	-0.88	\diamond		0.85 (0.76 - 0.94)
						$Q=2.25, p=0.52, I^2=0.0\%$
Hospitalised/fat	al heart failu	re				
-			1.01			1.18 (0.02 1.40)
ACCORD	152 (0.90)	124 (0.75)	-1.01	_		1.18 (0.93–1.49)
ADVANCE	220 (0.83)	231 (0.88)	-0.72			0.95 (0.79-1.14)
UKPDS	8 (0.06)	6 (0.11)	-0.66	+		0.55 (0.19-1.60)
VADT	79 (1.80)	85 (1.94)	-1.16			0.92 (0.68-1.25)
Overall	459	446	-0.88	<	>	1.00 (0.86–1.16) Q=3.59, p=0.31, I ² =16.4%)
				[
					.0	2.0
				Hazard ratio	o (95% CI)	


Legacy Effects: New T2DM UKPDS F/U NEJM 2008;359:1-13

Legacy Effects: Advanced T2DM VADT F/U NEJM 2015;372:2197

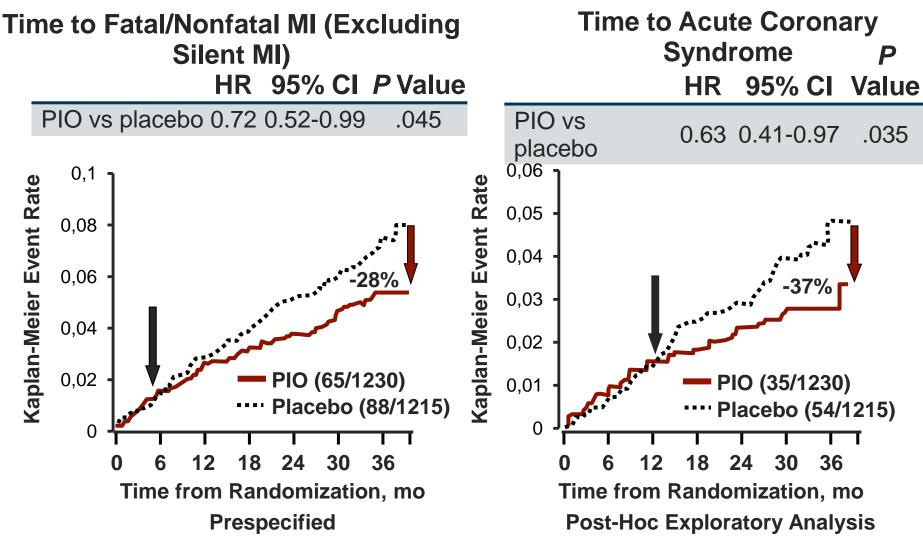


UGDP: Tolbutamide vs insulin vs placebo

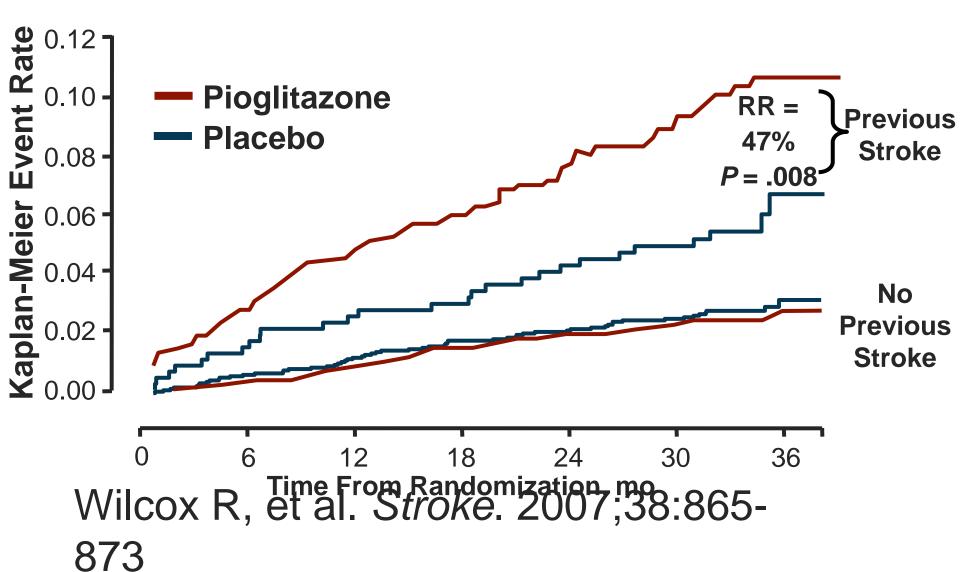

UGDP, Diabetes, 1970

UKPDS Study Fatal or Nonfatal MI, Sudden Death

a. UKPDS Group. *Lancet.* 1998;352:837-853.b. UKPDS Group. *Lancet.* 1998;352:854-865.


PROspective Actos Clinical Trial In MacroVascular Events (PROactive) Primary Endpoint

Death, MI, CVA, ACS, Leg Revascularization or Amputation, PCI, or CABG


Dormandy JA, et al. *Lancet*. 2005;366:1279-1289.

PROactive: *Pioglitazone (PIO) Reduces* "Hard" Coronary Heart Disease Endpoints

Erdmann E, et al. J Am Coll Cardiol. 2007;49:1772-1780.

PROactive: Time to Fatal/Nonfatal Stroke in Patients with Previous Stroke

PROactive HF Hospitalization and Mortality

N = 5238

	Pioglitazone, Placebo,			
	n (%)	n (%)	Ρ	
HF leading to hospital admission*	149 (5.7)	108 (4.1)	.007	
Fatal HF	25 (0.96)	22 (0.84)	NS	

*Non-adjudicated

Dormandy JA, et al. Lancet. 2005;366:1279-1289.

ORIGIN: Composite Outcomes & their Components

	HR (95% CI)	Ρ	1	Insulin /100 py	Standard /100 py
1 st Coprimary	1.02 (0.94, 1.11)	0.63	·	2.94	2.85
2 nd Coprimary	1.04 (0.97, 1.11)	0.27		5.52	5.28
Microvascular	0.97 (0.90, 1.05)	0.43	+	3.87	3.99
Death	0.98 (0.90, 1.08)	0.70	+	2.57	2.60
МІ	1.02 (0.88, 1.19)	0.75		0.93	0.90
Stroke	1.03 (0.89, 1.21)	0.69		0.91	0.88
CV Death	1.00 (0.89, 1.13)	0.98	-	1.57	1.55
CHF Hospital	0.90 (0.77, 1.05)	0.16	-∎+	0.85	0.95
Revascularized	1.06 (0.96, 1.16)	0.24	HR	2.69	2.52
NEJM 2012;367:319	Favors Ins	ulin ←	5 1 - 	$2 \rightarrow Favors$	Standard

Large CV Outcomes Trials in Diabetes (Non-Insulin)

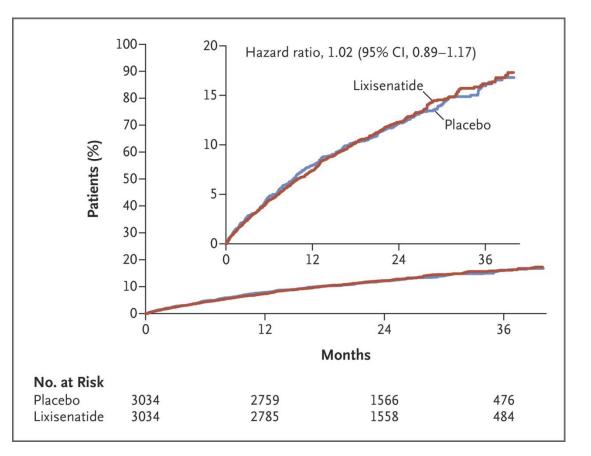
Study	SAVOR	EXAMINE	TECOS	CAROLINA	CARMELINA
DPP4-i	saxagliptin	alogliptin	sitagliptin	linagliptin	linagliptin
Comparator	placebo	placebo	placebo	sulfonylurea	placebo
Ν	16,500	5,400	14,000	6,000	8,300
Results	2013	2013	2015	2017	2017

Study	LEADER	ELIXA	SUSTAIN 6	EXSCEL	REWIND
GLP1-RA	liraglutide	lixisenatide	semaglutide	exenatide LR	dulaglutide
Comparator	placebo	placebo	placebo	placebo	placebo
N	16,500	14,000	6,000	5,400	8,300
Results	2016	2015	2016	2018	2019

Study	EMPA-REG	CANVAS	DECLARE	NCT01986881
SGLT-2-i	empaglifozin	canagliflozin	dapagliflozin	ertugliflozin
Comparator	placebo	placebo	placebo	placebo
N	7300	4300	22,200	3900
Results	2015	2017	2019	2020

DPP-4 Inhibitors: SAVOR, EXAMINE, and TECOS Key Results

SAVOR ^[a]	EXAMINE ^[b]	TECOS ^[c]
Saxagliptin vs Placebo	Alogliptin vs Placebo	Sitagliptin vs Placebo
 Median follow-up: 2.1 years CV outcomes Primary HR: 1.00 (0.89-1.27); P = .99 Secondary HR: 1.02 (0.94-1.11); P = .66 Higher incidence of Higher incidence of HF hospitalization in saxagliptin group 	 Median follow-up: 18 months CV outcomes Primary HR: 0.96 (≤ 1.16); P = .32 Secondary HR: 0.95 (≤ 1.14*); P = .26 	 Median follow-up: 3.0 years Noninferior to placebo for CV outcomes Primary HR: 0.98


a. Scirica BM, et al. *N Engl J Med*. 2013;369:1317-1326; b. White WB, et al. *N Engl J Med*. 2013;369:1327-1335; c. Green JB, et al. *N Engl J Med*. 2015;373:232-242.

ELIXA: Lixisenatide Outcome Trial

N = 6068, had recent acute coronary syndrome

Follow-up 25 months

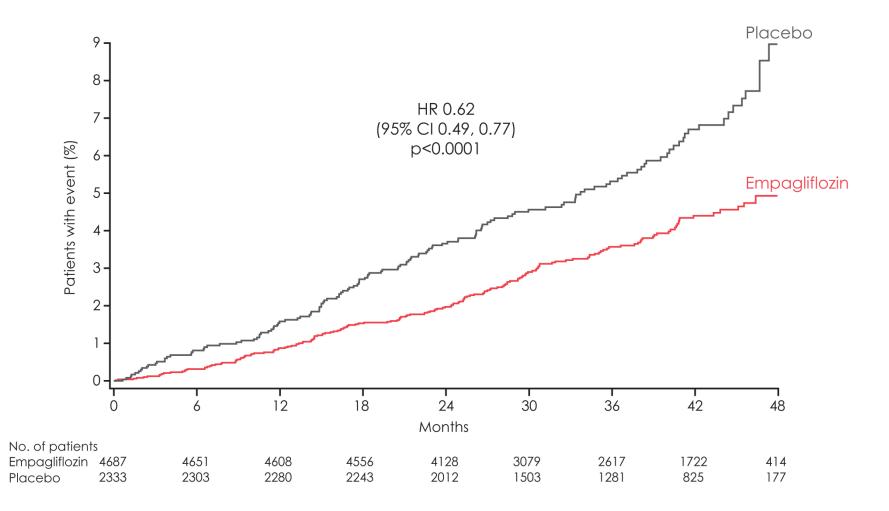
4 pt MACE: CV death, MI, stroke or hosp for unstable angina Events:805

EMPA-REG: Empagliflozin Cardiovascular Outcome Trial

• Key inclusion criteria

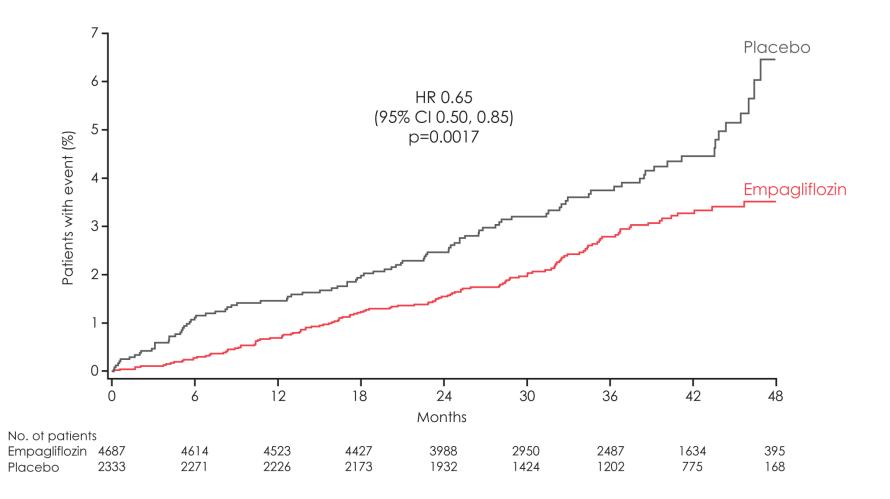
- Adults with type 2 diabetes
- − BMI \leq 45 kg/m²
- HbA1c 7–10%*
- Established cardiovascular disease
 - Prior myocardial infarction, coronary artery disease, stroke, unstable angina or occlusive peripheral arterial disease

Key exclusion criteria

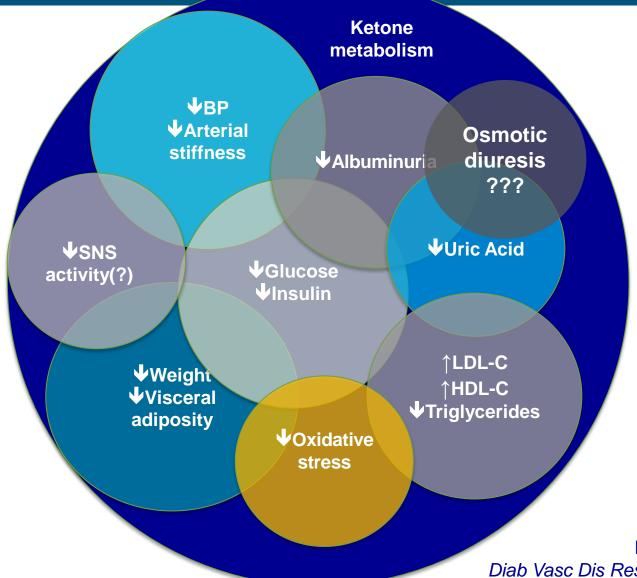

 eGFR <30 mL/min/1.73m² (MDRD) • Primary outcome

3-point MACE: Time to first occurrence of CV death, non-fatal MI or non-fatal stroke

• Key secondary outcome


 4-point MACE: Time to first occurrence of CV death, non-fatal MI, non-fatal stroke or hospitalisation for unstable angina

EMPA-REG: CV death


Cumulative incidence function. HR, hazard ratio

EMPA-REG: Hospitalization for HF

Cumulative incidence function. HR, hazard ratio

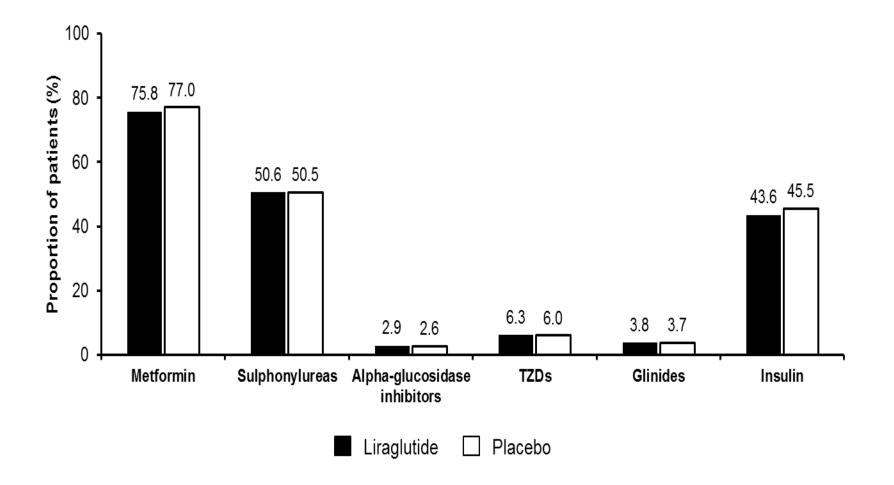
What was the underlying reason(s) for the dramatic benefit on CV outcomes observed in EMPA-REG?

Inzucchi SE *et al.* Diab Vasc Dis Res 2015;12:90-100

LEADER: Baseline characteristics

	Liraglutide (N=4668)	Placebo (N=4672)
Male sex, N (%)	3011 (64.5)	2992 (64.0)
Age, years	64.2 ± 7.2	64.4 ± 7.2
Diabetes duration, years	12.8 ± 8.0	12.9 ± 8.1
HbA _{1c} , %	8.7 ± 1.6	8.7 ± 1.5
BMI, kg/m²	32.5 ± 6.3	32.5 ± 6.3
Body weight, kg	91.9 ±21.2	91.6 ± 20.8
Systolic blood pressure, mmHg	135.9 ± 17.8	135.9 ± 17.7
Diastolic blood pressure, mmHg	77.2 ± 10.3	77.0 ± 10.1
Heart failure*, N (%)	835 (17.9)	832 (17.8)

*Heart failure includes New York Heart Association class I, II and III. BMI: body mass index; HbA_{1c}: glycated hemoglobin.


LEADER: Baseline cardiovascular risk profile

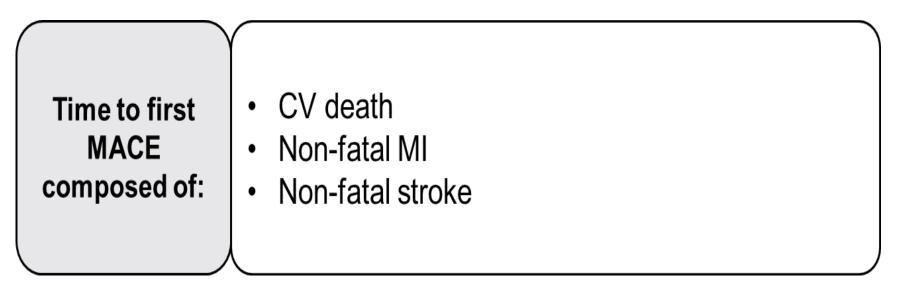
	Liraglutide (N=4668)	Placebo (N=4672)
Established CVD/CKD (age ≥50 years)	3831 (82.1)	3767 (80.6)
Prior myocardial infarction	1464 (31.4)	1400 (30.0)
Prior stroke or prior TIA	730 (15.6)	777 (16.6)
Prior revascularization	1835 (39.3)	1803 (38.6)
>50% stenosis of coronary, carotid, or lower extremity arteries	1188 (25.4)	1191 (25.5)
Documented symptomatic CHD	412 (8.8)	406 (8.7)
Documented asymptomatic cardiac ischemia	1241 (26.6)	1231 (26.3)
Chronic heart failure NYHA II – III	653 (14.0)	652 (14.0)
Chronic kidney disease (eGFR <60 mL/min/1.73m ²)	1185 (25.4)	1122 (24.0)

Data are number of patients (%).

CHD: coronary heart disease; CKD: chronic kidney disease; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate; NYHA: New York Heart Association; TIA: transient ischemic attack.

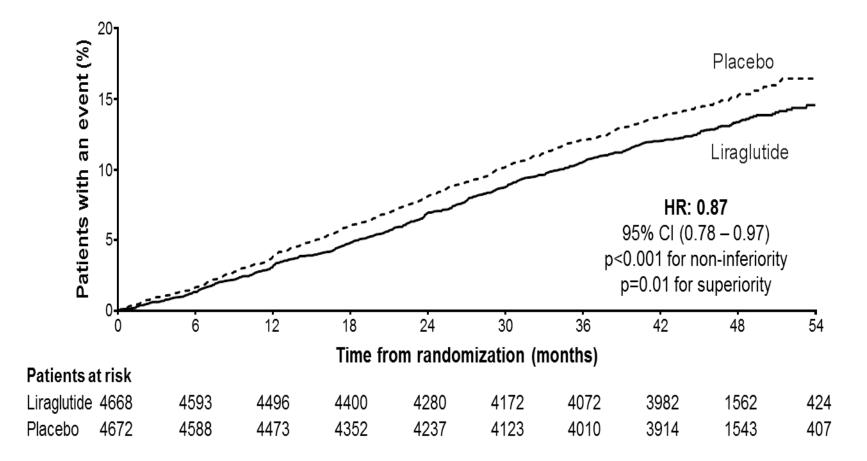
LEADER: Antihyperglycemic medication at baseline

TZD: thiazolidinediones.

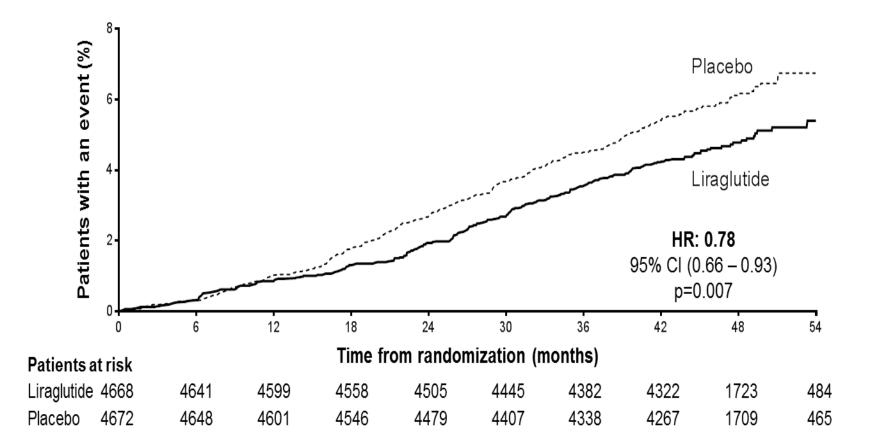

LEADER: Trial follow-up and drug exposure

	Liraglutide	Placebo
Median follow-up (years)	3.84	3.84
Median time of exposure to study medication (years)	3.52	3.52
Mean proportion of time on study drug (%)*	84.0	83.0
Median (IQR) daily dose of liraglutide (mg) [†]	1.78 (1.54–1.79)	-

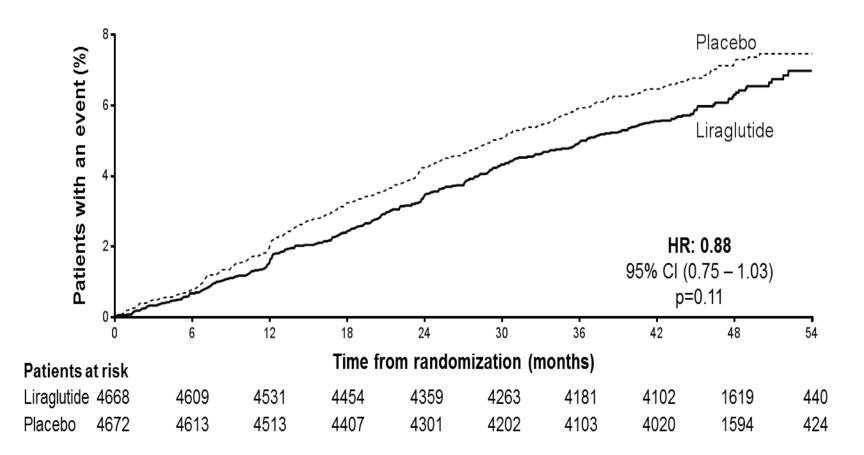
*Excluding pre-scheduled 30 day off-treatment follow-up period. †Including off-treatment periods. IQR: interquartile range.


LEADER: Primary outcome

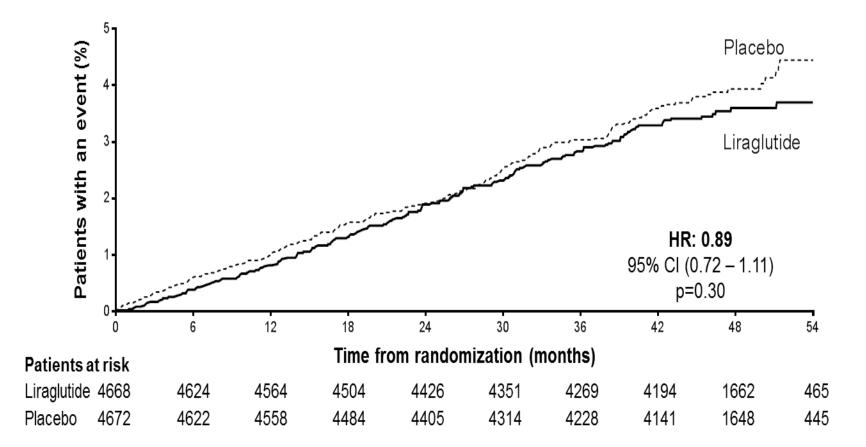
9,340 patients with T2DM and high risk of CVD randomized to liraglutide 1.8mg or maximally tolerated dose vs placebo


CV: cardiovascular; MACE: major adverse cardiovascular event; MI: myocardial infarction.

LEADER: Primary outcome CV death, non-fatal MI, or non-fatal stroke


The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

LEADER: CV death

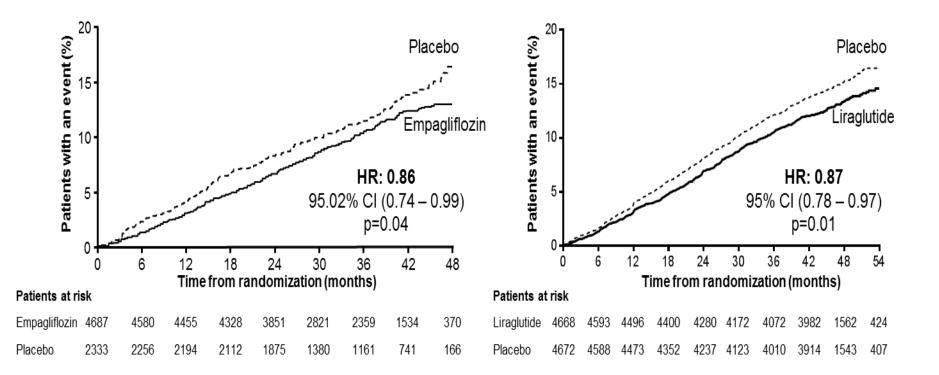

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

LEADER: Time to non-fatal myocardial infarction

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

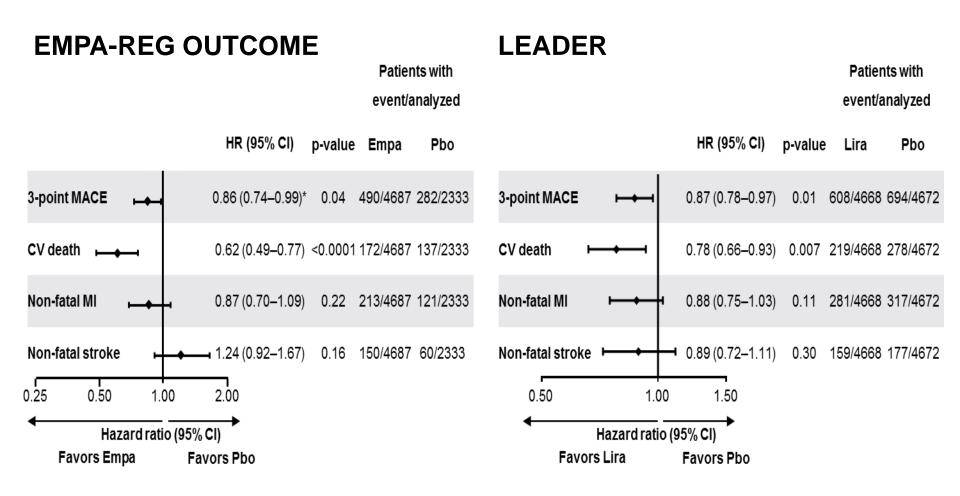
LEADER: Time to non-fatal stroke

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.


Empagliflozin and Liraglutide

EMPA-REG OUTCOME

CV death, non-fatal MI, or non-fatal stroke


LEADER

CV death, non-fatal MI, or non-fatal stroke

CI: confidence interval; CV: cardiovascular; HR: hazard ratio; MI: myocardial infarction. Zinman B et al. *N Engl J Med* 2015;373:2117-2128.

Individual components of the primary endpoint

*95.02% CI.

CV: cardiovascular; Empa: empaglifloin; Lira: liraglutide; MACE: major adverse cardiovascular event; MI: myocardial infarction; Pbo: placebo. Zinman B et al. Presented at European Association for the Study of Diabetes 2015, Stockholm, Sweden.

Drug Safety

Liraglutide

- Gastrointestinal
- Risk of AKI
- Pancreatitis
- Medullary Thyroid CA

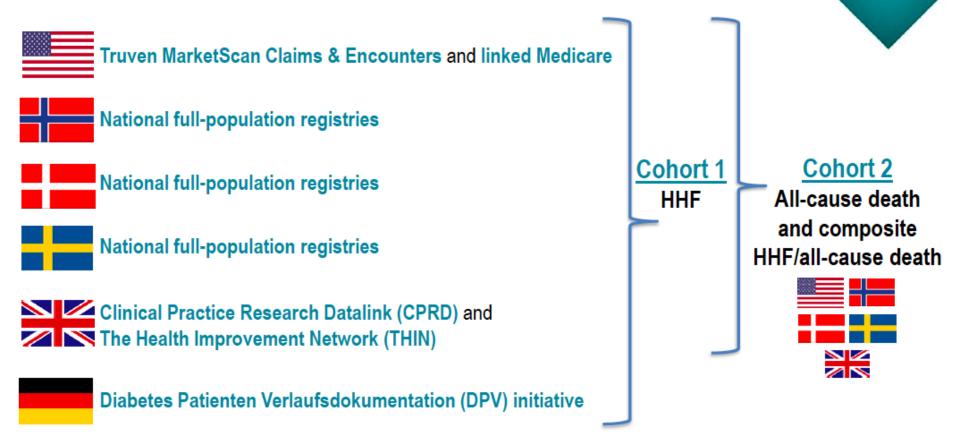
• Empagliflozin

- Genital mycotic infections
- Volume Depletion
- Urinary Frequency
- DKA
- Not to be used with GFR < 45.

Ongoing Outcomes Trials of AHA

Class	Participants	Drugs	Est. N
DPP4i	Diabetes	linagliptin, omarigliptin	15,000
GLP1a	Diabetes	exenatide. dulaglutide, semaglutide, albiglutide, ITCA	50,000
SGLT2i	Diabetes	canagliflozin, dapagliflozin, ertugliflozin	23,000
Insulin	Diabetes	Degludec	7,500
Biguanide	A1c 5.5-6.49	Metformin	12,000
AGI	IGT	Acarbose	<u>7,500</u>
			120,000

Primary


 Compare risk of HHF in patients with Type 2 diabetes newly initiated on SGLT-2 inhibitors versus other glucose-lowering drugs (GLDs)

Secondary

- Compare risk of all-cause death between the two treatment groups
- Compare risk of HHF or all-cause death between the two treatment groups

Data Sources: Health Records Across Six Countries

ACC 17

Inclusion/Exclusion Criteria

() ACC.17

- New users receiving SGLT-2 inhibitors or other GLDs
 - Established Type 2 diabetes on or prior to the index date
 - − ≥18 years old
 - >1 year* historical data available prior to the index date

Exclusion

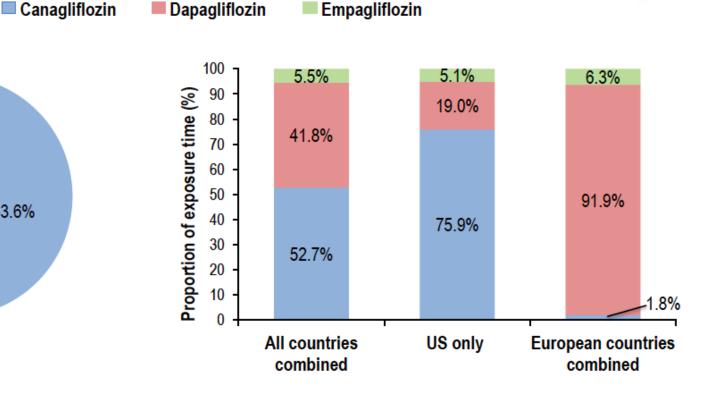
- Patients with Type 1 diabetes
- Patients with gestational diabetes

*In Germany, >6 months

CVDREAL

Baseline Characteristics for Propensity Match Cohort SGLT-2 inhibitor*

	SGLT-2 inhibitor* N=154,523	Other GLD* N=154,523
Age, years, mean (SD)	57.0 (9.9)	57.0 (10.1)
Women	68,419 (44.3)	68,770 (44.5)
Established cardiovascular disease†	20,043 (13.0)	20,302 (13.1)
Acute myocardial infarction	3792 (2.5)	3882 (2.5)
Unstable angina	2529 (1.6)	2568 (1.7)
Heart failure	4714 (3.1)	4759 (3.1)
Atrial fibrillation	5632 (3.6)	5698 (3.7)
Stroke	6347 (4.1)	6394 (4.1)
Peripheral arterial disease	5239 (3.4)	5229 (3.4)
Microvascular disease	42,214 (27.3)	42,221 (27.3)
Chronic kidney disease	3920 (2.5)	4170 (2.7)


*Data are n (%) unless otherwise stated; †Myocardial infarction, unstable angina, stroke, heart failure, transient ischemic attack, coronary revascularization or occlusive peripheral artery disease

CVDREAL Contribution of SGLT-2 inhibitor Class as a Proportion of () ACC.17

9.7% 36.6% 53.6%

Cohort 1: HHF Analysis (N=309,046)

Exposure Time in Propensity-Match Cohorts

HHF Primary Analysis

Database	N	# of events			HR (95% CI)	
US	233,798	298		H	0.55 (0.44, 0.69)	
Norway	25,050	278			0.62 (0.49, 0.79)	
Denmark	18,468	167			0.77 (0.59, 1.01)	P-value for
Sweden	18,378	191			0.61 (0.45, 0.82)	SGLT2i vs oGLD: <0.001
UK	10,462	16			0.36 (0.12, 1.13)	Heterogeneity p-value: 0.169
Germany	2900	11	•		0.14 (0.03, 0.68)	
Total	309,056	961		•	0.61 (0.51, 0.73)	
			Favor	SGLT2i 🗲	→ Favor oGLD	
		Hazard Ra	: 0.05 0.10 0.25	0.50 1.00	2.00	

() ACC.17

Data are on treatment, unadjusted; oGLD=other glucose-lowering drug; HR=hazard ratio

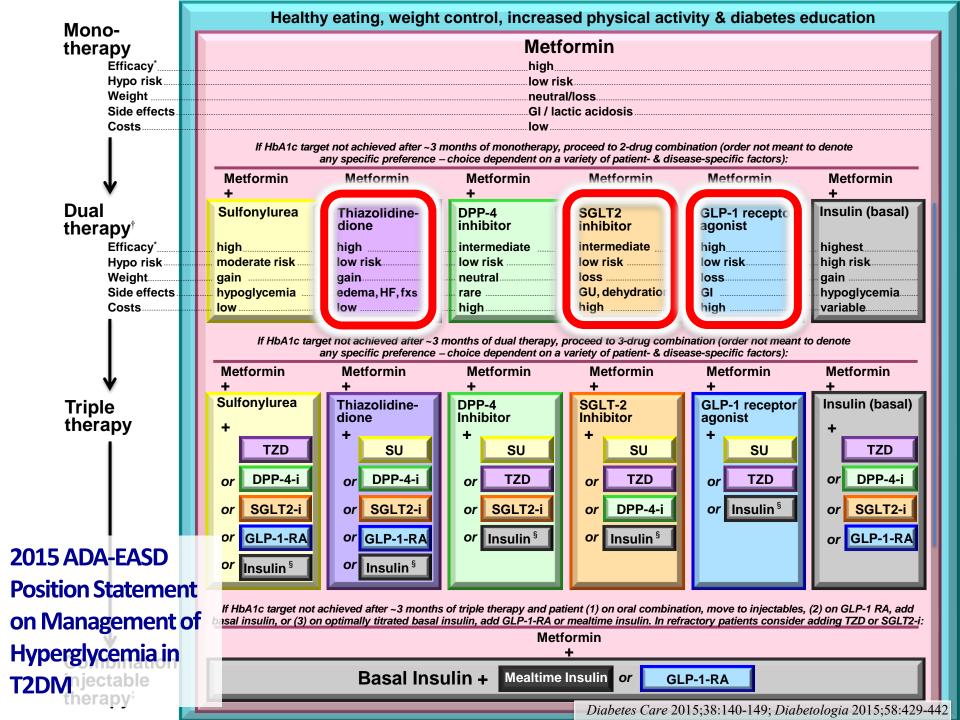
All-Cause Death Primary Analysis

		Hazard Ratio:	Favor SGLT2i ←	→ Favor oGLD
Total	215,622	1334	•	0.49 (0.41, 0.57)
ик	10,462	80		0.73 (0.47, 1.15)
Sweden	18,378	317	∎1	0.47 (0.37, 0.60)
Denmark	18,468	323		0.46 (0.37, 0.57)
Norway	25,050	364	⊢ ₩-1	0.55 (0.44, 0.68)
US	143,264	250	⊷∎⊶	0.38 (0.29, 0.50)
Database	Ν	# of events		HR (95% CI)

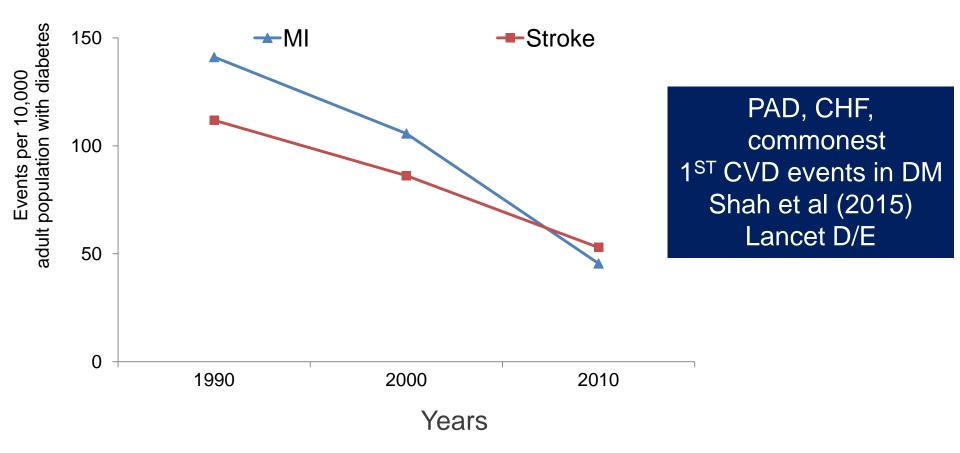
P-value for SGLT2i vs oGLD: <0.001

ACC.17

Heterogeneity p-value: 0.089


Data are on treatment, unadjusted; oGLD=other glucose-lowering drug; HR=hazard ratio

Large CV Outcomes Trials in Diabetes (Non-Insulin)



Study	LEADER	ELIXA	SUSTAIN 6	EXSCEL	REWIND
GLP1-RA	liraglutide	lixisenatide	semaglutide	exenatide LR	dulaglutide
Comparator	placebo	DEUTRAL	placebo	placebo	placebo
Ν	16,500	NEU	6,000	5,400	8,300
Results	2016	2015	2016	2018	2019

Study	EMPA-REG	CANVAS	DECLARE	NCT01986881
SGLT-2-i	empaglifozin	canagliflozin	dapagliflozin	ertugliflozin
Comparator	placebo	placebo	placebo	placebo
N	7300	4300	22,200	3900
Results	2015	2017	2019	2020

Diabetes-related CV complications have declined with improved care

Adapted Gregg E et al. *N Engl J Med.* 2014.

Summary: Risk for CVD events in Diabetes is Lower

- Clear evidence UCVD /mortality in T2DM over several decades, but there remains a large gap over the risk for patients without diabetes
 - Better management CVD risk factors big part, but many sub-optimally treated
 - BP and LDL-C reduction > glucose reduction
 - Smoking reduction
- Data from cardiovascular outcome trials support role of SGLT-2 inhibitors and long-acting GLP-1 receptor agonists for reduction of CVD deaths in patients with established CVD
- Keeping in mind the limitations of the study, CVD Real suggests that CVD benefit with SGLT-2 inhibitors may be a class effect